A Petrov--Galerkin Spectral Method of Linear Complexity for Fractional Multiterm ODEs on the Half Line | SIAM Journal on Scientific Computing | Vol. 39, No. 3 | Society for Industrial and Applied Mathematics
نویسندگان
چکیده
Abstract. We present a new tunably accurate Laguerre Petrov–Galerkin spectral method for solving linear multiterm fractional initial value problems with derivative orders at most one and constant coefficients on the half line. Our method results in a matrix equation of special structure which can be solved in O(N logN) operations. We also take advantage of recurrence relations for the generalized associated Laguerre functions (GALFs) in order to derive explicit expressions for the entries of the stiffness and mass matrices, which can be factored into the product of a diagonal matrix and a lower-triangular Toeplitz matrix. The resulting spectral method is efficient for solving multiterm fractional differential equations with arbitrarily many terms, which we demonstrate by solving a fifty-term example. We apply this method to a distributed order differential equation, which is approximated by linear multiterm equations through the Gauss–Legendre quadrature rule. We provide numerical examples demonstrating the spectral convergence and linear complexity of the method.
منابع مشابه
A Petrov-Galerkin Spectral Method of Linear Complexity for Fractional Multiterm ODEs on the Half Line
Abstract. We present a new tunably-accurate Laguerre Petrov-Galerkin spectral method for solving linear multi-term fractional initial value problems with derivative orders at most one and constant coe cients on the half line. Our method results in a matrix equation of special structure which can be solved in O(N logN) operations. We also take advantage of recurrence relations for the generalize...
متن کاملOptimal Error Estimates of Spectral Petrov-Galerkin and Collocation Methods for Initial Value Problems of Fractional Differential Equations
We present optimal error estimates for spectral Petrov–Galerkin methods and spectral collocation methods for linear fractional ordinary differential equations with initial value on a finite interval. We also develop Laguerre spectral Petrov–Galerkin methods and collocation methods for fractional equations on the half line. Numerical results confirm the error estimates.
متن کاملFractional Spectral Collocation Method
We develop an exponentially accurate fractional spectral collocation method for solving steady-state and time-dependent fractional PDEs (FPDEs). We first introduce a new family of interpolants, called fractional Lagrange interpolants, which satisfy the Kronecker delta property at collocation points. We perform such a construction following a spectral theory recently developed in [M. Zayernouri ...
متن کاملA Generalized Spectral Collocation Method with Tunable Accuracy for Variable-Order Fractional Differential Equations | SIAM Journal on Scientific Computing | Vol. 37, No. 6 | Society for Industrial and Applied Mathematics
We generalize existing Jacobi–Gauss–Lobatto collocation methods for variable-order fractional differential equations using a singular approximation basis in terms of weighted Jacobi polynomials of the form (1 ± x)μP a,b j (x), where μ > −1. In order to derive the differentiation matrices of the variable-order fractional derivatives, we develop a three-term recurrence relation for both integrals...
متن کاملThree dimensional static and dynamic analysis of thick plates by the meshless local Petrov-Galerkin (MLPG) method under different loading conditions
In this paper, three dimensional (3D) static and dynamic analysis of thick plates based on the Meshless Local Petrov-Galerkin (MLPG) is presented. Using the kinematics of a three-dimensional continuum, the local weak form of the equilibrium equations is derived. A weak formulation for the set of governing equations is transformed into local integral equations on local sub-domains by using a uni...
متن کامل